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Characterization of Surface EMG Signal
Based on Fuzzy Entropy

Weiting Chen, Zhizhong Wang, Hongbo Xie, and Wangxin Yu

Abstract—Fuzzy entropy (FuzzyEn), a new measure of time se-
ries regularity, was proposed and applied to the characterization
of surface electromyography (EMG) signals. Similar to the two ex-
isting related measures ApEn and SampEn, FuzzyEn is the nega-
tive natural logarithm of the conditional probability that two vec-
tors similar for points remain similar for the next +1 points.
Importing the concept of fuzzy sets, vectors’ similarity is fuzzily
defined in FuzzyEn on the basis of exponential function and their
shapes. Besides possessing the good properties of SampEn supe-
rior to ApEn, FuzzyEn also succeeds in giving the entropy defini-
tion in the case of small parameters. Its performance on character-
izing surface EMG signals, as well as independent, identically dis-
tributed (i.i.d.) random numbers and periodical sinusoidal signals,
shows that FuzzyEn can more efficiently measure the regularity
of time series. The method introduced here can also be applied to
other noisy physiological signals with relatively short datasets.

Index Terms—ApEn, electromyography (EMG), FuzzyEn, regu-
larity, SampEn.

I. INTRODUCTION

SURFACE electromyography (EMG) signal has been widely
used in rehabilitation, prosthesis control, muscle fatigue

analysis, and clinical diagnosis, owing to its convenient and
noninvasive access to the study of myoelectric features of
neuromuscular activation [1]–[4]. The recognition of the signal
can be mainly summarized in two steps: feature extraction and
feature classification, with the former being of the main kernel
in system recognition [5]. However, the surface EMG signal
is extremely complex as it is influenced by many factors in
the electrophysiology and the recording environment [2]. The
complexity of the signal poses a great challenge to its feature
extraction.

The present methods used in EMG feature extraction are
most commonly based on the assumption that the signal is
linear. However, it has been recently recognized that EMG
signal exhibits nonlinearity [6], [7], and can hardly be described
by simple linear models. Therefore, methods of nonlinear time
series analysis have been introduced to EMG to get a better
insight into the complex signal [6], [8]–[16]. Efforts have been
made to use fractal dimension to quantify motor unit recruit-
ment patterns [6]; evaluate human muscle’s potential in athletics
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[8], study the relation between the activity of the biceps brachii
and the fractal dimension of EMG during flexion–extension
of the forearm [9], characterize action EMG [10], and so on.
Average maximum finite-time Lyapunov exponents were esti-
mated to quantify the local dynamic stability of human walking
kinematics [11]. Other studies applied recurrence quantification
analysis to the evaluation of muscle fatigue [12], [13]. Efforts
have also been made to analyze EMG by combining several
parameters such as correlation dimension, Lyapunov spectrum,
Kaplan–Yorke dimension, and the recurrence plots in testing
the nonlinearity, stationarity, and determinism of EMG signals
from muscles in the leg during walking and maximum volun-
tary contraction [14], in comparing various postures or muscle
contraction conditions [15], in evaluating the level of muscular
efforts under static work conditions [16], etc.

Most nonlinear dynamic measures, however, usually need
very large dataset to get reliable and convergent values in
their calculation [17], and may lead to spurious results when
applied to short or irregular sequences of real experimental
data [18]. When dealing with surface EMG, another problem
is the unavoidable noises. To solve the problems of short data
and noisy recordings in physiological signals, Pincus [19]–[21]
developed approximate entropy (ApEn) to measure the system
complexity, which is applicable to noisy and short dataset.
Superior to most nonlinear dynamic measures such as fractal
dimension [20], [22], Lyapunov spectrum, Kolmogorov–Sinai
(KS) entropy [20], and spectral entropy [23], ApEn has shown
potential application to a wide range of physiological and
clinical signals such as hormone pulsatility, genetic sequences,
respiratory patterns, heart rate variability, electrocardiogram,
and electroencephalography [24]–[30]. In the study of EMG
signal, Radhakrishnan et al. [31] chose ApEn as the discrim-
inating statistic for their tests for possible nonlinearity of the
contraction segments interspersed in a uterine electromyo-
graphy. Meng et al. [32] made a comprehensive nonlinear
analysis by calculating ApEn together with other nonlinear
measures to test whether EMG is nonlinear deterministic or
random. Vaillancourt and Newell [33] used cross-ApEn to
assess the time-dependent structure between the limb accel-
eration and EMG activity. Nevertheless, ApEn suggests more
similarity than is present and is thus biased. To be free of the
bias caused by self-matching, Richman and Moorman [34] de-
veloped another related measure of time series regularity named
sample entropy (SampEn). Despite its advantage of being less
dependent on dataset length and the relative consistency over a
broader range of , and values, SampEn is not
defined if no template and forward match occurs in the case of
small and [34].
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In this work, we proposed another related measure of time se-
ries regularity, fuzzy entropy (FuzzyEn), and applied it to char-
acterizing surface EMG signals. The rest of the paper is orga-
nized as follows. Section II introduces the new measure, fuzzy
entropy based on fuzzy sets. Section III first tests the method
on independent, identically distributed (i.i.d.) uniform random
numbers and periodical signals, and then applies it to the char-
acterization of experimental surface EMG signals. Features are
also extracted from the signals using ApEn [35] and SampEn
[36] to make a comparison of the three related measures with
regard to their performance on measuring signal regularity. Fi-
nally, Section IV concludes the paper.

II. METHODS

In the two existing related regularity measures ApEn and
SampEn, similarity of vectors is based on Heaviside function,
which can be represented as

(1)

Heaviside function leads to a kind of conventional two-state
classifier, where an input pattern is judged its belongingness to
a given class by whether it satisfies certain precise properties
required of membership. In the real physical world, however,
boundaries between classes may be ambiguous, and it is diffi-
cult to determine whether an input pattern belongs totally to a
class. The concept of “fuzzy sets” introduced by Zadeh [37] in
1965 puts forward a means of characterizing such input–output
relations in an environment of imprecision. By introducing the
“membership degree” with a fuzzy function which as-
sociates each point with a real number in the range [0, 1],
Zadeh’s theory provided a mechanism for measuring the degree
to which a pattern belongs to a given class: the nearer the value
of to unity, the higher the membership grade of in the
set C. In FuzzyEn, we imported the concept and employed the
family of exponential functions as the fuzzy
function to get a fuzzy measurement of two vectors’ similarity
based on their shapes. The family of exponential function pos-
sesses the following desired properties: 1) being continuous so
that the similarity does not change abruptly; 2) being convex so
that self-similarity is the maximum.

A. Definition of FuzzyEn

For an sample time series , given ,
form vector sequences as follows:

(2)

here represents consecutive values, commencing with
the th point and generalized by removing a baseline

(3)

For certain vector , define the distance between and
as the maximum absolute difference of the corresponding

scalar components

(4)

Given and , calculate the similarity degree of to
through a fuzzy function

(5)

where the fuzzy function is the exponential function

(6)

Define the function as

(7)

Similarly, form and get the function

(8)

Finally, we can define the parameter FuzzyEn of the
sequence as the negative natural logarithm of the deviation of

from

(9)

which, for finite datasets, can be estimated by the statistic

(10)

B. Parameter Choices of FuzzyEn

There are three parameters that must be fixed for each cal-
culation of FuzzyEn. The first parameter , as in ApEn and
SampEn, is the length of sequences to be compared. The other
two parameters and determine the width and the gradient
of the boundary of the exponential function respectively. Typi-
cally [20], larger allows more detailed reconstruction of the
dynamic process. But a too large value is unfavorable due to
the need of a very large (10 –30 ), which is hard to meet for
a physiological dataset, or the need of a very broad boundary,
which will lead to information loss. As to the fuzzy similarity
boundary determined by the other two parameters and , too
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Fig. 1. An illustration of the exponential function (exp(�d =r)) with dif-
ferent parameter choices. (a) Exponential function with fixed n = 2 and varied
r (0.1, 0.2, and 0.3). (b) Exponential function with fixed r = 0:2 and varied n
(1, 2, and 5).

narrow ones will result in salient influence from noise, while
too broad a boundary, as mentioned above, is supposed to be
avoided for fear of information loss. Fig. 1 illustrates the ef-
fect of different parameter choices of and on the exponen-
tial function. Experimentally, it is convenient to set the width
of the boundary as multiplied by the standard deviation (SD)
of the original dataset [34] and choose small integers for the
selection.

Another parameter is sampling rate, which should be higher
than the Nyquist rate. However, too high a sampling rate is not
necessary and will increase computational load.

III. EXPERIMENTAL RESULTS

To illustrate the performance of the new regularity measure
compared with the two existing ones, in this section we firstly
tested its performance on i.i.d. uniform random numbers and
periodical sinusoidal signals, and then applied the three mea-
sures to the characterization of experimental surface EMG sig-
nals. The parameter in this section refers to the multiplicand
in .

A. Performance on i.i.d. Uniform Random Numbers and
Periodical Sinusoidal Signals

The three statistics of FuzzyEn, ApEn, and SampEn were
firstly tested on i.i.d. uniform random numbers. Fig. 2 shows
the performance of FuzzyEn(2,2, ), ApEn(2, ), and
SampEn(2, ) on i.i.d. random numbers with different
lengths of =100 and . SampEn gives no entropy
values when is smaller than 0.05 for in Fig. 2(a),
and 0.1 for in Fig. 2(b). So the calculation of SampEn
is confronted with the problem of parameter limitation, and the
shorter the dataset is, the larger the minimum tolerance is
needed. But the problem does not embarrass the calculation of
ApEn and FuzzyEn.

The performances of the three statistics of FuzzyEn, ApEn,
and SampEn were also tested on two periodical sinusoidal sig-
nals at different frequencies 50 and 100 Hz (see Fig. 3). For
both =50 and , FuzzyEn entropy values of the sinu-
soidal signal at 100 Hz are higher than those of the sinusoidal
signal at 50 Hz for all values, which indicates strong rela-
tive consistency of its regularity measurement. Values of ApEn
for the two signals, however, may tilt over with each other no

Fig. 2. FuzzyEn(2; 2; r;N), ApEn(2; r;N), and SampEn(2; r;N) as func-
tions of r for i.i.d. uniform random numbers. SampEn gives no entropy values
when r is smaller than 0.05 for N = 100, and 0.1 for N = 50. Problem does
not embarrass ApEn and FuzzyEn.

matter whether or , which indicates poor
consistency. Though SampEn shows good relative consistency
when measuring the regularity of the two sinusoidal signals with
enough data points [ in Fig. 3(f)], it no longer holds
the property when dealing with the same two signals with short
data length [ in Fig. 3(e)].

B. Performance on Experimental Surface EMG Signals

1) Materials: 160 sets of two-channel surface EMG sig-
nals were analyzed for four different motions: hand grasping
(HG), hand opening (HO), forearm supination (FS), and forearm
pronation (FP). The signal collection was completed in the EMG
room of Shanghai Huashan Hospital, Shanghai, China, with
informed consents provided by all the subjects. Skin surface
of interested area was abraded with alcohol beforehand, and
two sets of discs bipolar Ag/AgCl electrodes with diameters
of 5 mm were placed over the flexor carpi radialis and the ex-
tensor carpi radialis longus on the right forearm. The sample
rate was set to 1000 Hz and the bandwidth of the amplifier-filter
was 10–500 Hz, for surface EMG is believed to contain relevant
information only up to about 500 Hz, with the dominant energy
in the range of 50–150 Hz [38]. Fig. 4 describes 2.5 s waveform
of surface EMG during forearm pronation.

2) Parameter Selections: For the selection of parameters in
FuzzyEn , ApEn , and SampEn
in our experiments concerning surface EMG signals, was
fixed to 2 in that surface EMG signals recorded during HG, HO,
FP, and FS actions are usually short, and the other parameters,

and , were chosen on the basis of experimental data. We cal-
culated the entropy values for 20 sets of surface EMG signals
of forearm pronation with different (for all the three entropy
definitions) and (for FuzzyEn only) values, and then evalu-
ated the SD of the entropy values. The effect of different param-
eter selections on the entropy values is demonstrated in Fig. 5.
Generally, the larger the and are, the smaller the SD is. But
as mentioned above, too wide a boundary will lead to informa-
tion loss. Therefore, appropriate selections of and can be
picked at the point where the decrease in SD becomes slow. In
Fig. 5, we can see that SDs of FuzzyEn and SampEn decrease
smoothly with the increasing , whereas SD of ApEn may jump
up and down when increases, which indicates that the former
two entropy statistics have better relative consistency than the
latter one. We can also find that the SD of FuzzyEn is smaller
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Fig. 3. FuzzyEn(2; 2; r;N), ApEn(2; r; N), and SampEn(2; r; N) as functions of r for two sinusoidal signals at different frequencies 50 and 100 Hz. For both
N = 50 and N = 500, FuzzyEn values for the sinusoidal signal at 100 Hz are higher than those of the signal at 50 Hz for all the r values, whereas ApEn values for
the two signals tilt over with each other when r decreases. SampEn shows relative consistency when measuring the regularity of the two signals for (f) N = 500,
but it no longer holds the property when dealing with the same two signals with small data points of (e) N = 50.

Fig. 4. 2.5s waveform of surface EMG during forearm pronation. The abscissa
is time (ms), and the ordinate is the amplitude (mv). The two channels of surface
EMG signals sampled at 1000 Hz were recorded from (a) the flexor carpi radialis
and (b) the extensor carpi radialis longus on the right forearm.

than those of ApEn and SampEn, which implies that FuzzyEn
is more stable than the other two measures.

In this study, was chosen in the calculation of
FuzzyEn because SD changes little with ;
and was set for the calculation of FuzzyEn and
SampEn, in that the increase in has little influence on the
decrease in SDs of the two statistics with ; for the

Fig. 5. Effect of different parameter selections on FuzzyEn, ApEn, and
SampEn for surface EMG signals. SDs of entropy values for twenty sets of
surface EMG signals during forearm pronation action are shown in (a) as
functions of r (for all the three entropy measurements) and in (b) as a function
of n (for FuzzyEn only). Generally, SD decreases when r and n increase.

calculation of the statistics of ApEn, was also set to 0.3 for
the sake of convenience.

3) Results: SDs of the three entropy statistics for all the
two-channel surface EMG signals during the four motions (FP,
FS, HG, and HO) are listed in Table I. Among the three statistics,
FuzzyEn has the smallest SD, SampEn comes next, and ApEn
has the largest SD. Figs. 6–8 further depict the performances of
FuzzyEn, ApEn, and SampEn on characterizing surface EMG
signals of the four known actions. The abscissa in each figure
represents the corresponding entropy value of the surface EMG
from channel 1, and the ordinate refers to that from channel 2.
In Fig. 7, points of the four motions from ApEn are not clearly
distinguishable, with the boundaries of FP, HG, and HO some-
what overlapping each other. Although points of FS are seen
apart from those of the other three motions, 40 points fall into
two regions rather than into one. SampEn (in Fig. 8) shows
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TABLE I
STANDARD DEVIATIONS OF THE THREE ENTROPIES FOR THE TWO-CHANNEL

SURFACE EMG SIGNALS DURING THE FOUR MOTIONS (FP, FS, HG, AND HO)

Fig. 6. Scatter plot of FuzzyEn entropy values of two-channel surface EMG
signals for the four different motions. The abscissa represents the FuzzyEn en-
tropy value of the surface EMG from channel 1, and the ordinate refers to that
from channel 2. Points of the FuzzyEn entropy values for the four motions fall
into four regions and can be distinguished manually.

better distinguishing result than ApEn, with the boundaries be-
tween points of different motions much more apparent. How-
ever, the seven points of FS are away from the other points of
the same motion. On the contrary, they are much closer to those
of the other two motions FP and HO. Among the three mea-
sures, FuzzyEn owns the best characterizing result. In Fig. 6,
all the points of the four motions can be totally distinguished
manually.

IV. DISCUSSION AND CONCLUSION

Despite the sacrifice of precisely characterizing the under-
lying dynamics, FuzzyEn is applicable to relatively short phys-
iological signals by using a small embedding dimension . In
addition, it employs coarse tolerance through the selection of
parameters and , and thus achieves its robustness to noise.
Like ApEn and SampEn, FuzzyEn is the negative natural loga-
rithm of the conditional probability that a dataset of length ,
having repeated itself for points within a boundary, will also
repeat itself for points. It adopts the modifications in
which SampEn differs from ApEn: 1) excluding self-matches,
i.e., vectors are not compared to themselves; 2) considering only
the first vectors of length so that, for ,
both and are defined. By doing so, FuzzyEn gets the
good properties that SampEn possesses: more independence on
data length and relative consistency which may fail ApEn under
certain circumstances.

Fig. 7. Scatter plot of ApEn entropy values of surface EMG signals for the
four different motions. The abscissa represents the ApEn entropy value of the
surface EMG from channel 1, and the ordinate refers to that from channel 2. The
boundaries between points of FP, HG and HO somewhat overlap each other.
Moreover, the points of FS motion fall into two regions.

Fig. 8. Scatter plot of SampEn entropy values of surface EMG signals for the
four different motions. The abscissa represents the SampEn entropy value of
the surface EMG from channel 1, and the ordinate refers to that from channel
2. Different motions are better distinguished than those in Fig. 7. However, the
seven points of FS motion are away from the other points of the same motion.
On the contrary, they are much closer to the points of the other two motions FP
and HO.

Unlike ApEn and SampEn, where the similarity of two vec-
tors is based on Heaviside function, FuzzyEn employs exponen-
tial function to bound two vectors’ similarity. In a Heaviside
function, the boundary is rigid: the contributions of all the data
points inside it are treated equally, whereas the data points just
outside it are left out. The hard boundary causes discontinuity,
which may lead to abrupt changes of entropy values when the
tolerance changes slightly, and even to the failure in SampEn
definition if no template-match can be found for small tolerance
. In an exponential function, on the contrary, there is no rigid

boundary. The exponential function value around certain vector
can be viewed as the fuzzy membership to indicate the simi-

larity between it and its neighbor . The closer the neighboring
vector is, the more similar is to , and the similarity
between and is almost zero when is far away from

. As all the data points are considered as members of expo-
nential function fuzzily, entropy values of FuzzyEn will change
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continuously and gracefully, and there’s no definition limitation
of parameters. The exponential function is an ad hoc choice due
to its easiness to be understood. Indeed, any other function that
possesses the good properties listed in Section II can also be
chosen.

Another difference between FuzzyEn and ApEn or SampEn
is the construction of -dimensional vector from one dimen-
sional time series. In both ApEn and SampEn, vectors

are formed directly from the original con-
secutive values as

(11)

and the distance between and is defined as

(12)

Under the definition, and are considered to be similar
only when . So vec-
tors’ similarity is totally determined by their absolute coordi-
nates, which may fail in the application to those signals with
mild fluctuations [29]. In FuzzyEn, the vector sequences are
generalized by removing the baseline using (2). In this way, vec-
tors’ similarity, determined by the distance between the vec-
tors as in (5), depends on their shapes rather than their absolute
coordinates, which makes the similarity definition fuzzier.

Regularity of EMG signals varies when muscles are involved
in different movements, and can thus be used as a character-
istic feature of EMG signals for different motions. Entropy def-
initions of ApEn, SampEn, and FuzzyEn can track qualitative
changes in time series patterns and allow one to assess the tem-
poral regularity of the time series. The better distinguishing re-
sult of the four motions by FuzzyEn, compared with those by
ApEn and SampEn, demonstrates that the new measure can
characterize surface EMG signals more efficiently.

FuzzyEn can also be applied to other physiological signals
with short data length in noisy background. Nevertheless,
FuzzyEn gives only a single index for the general behavior of a
time series. To obtain more sufficient insight into the underlying
dynamics, future works can concentrate on multiscale FuzzyEn
entropy analyses through characterizing time series at different
time scales. Moreover, the parameter selection introduced
here is somewhat subjective. Efforts are still needed to give
detailed guidelines for the parameter optimization in FuzzyEn
calculation.
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